FOWRITEI® PRECISION GLOBE CONTROL VALVES

A unit of CRANE Co.

3-WAY MIXING, BRONZE BODY

- ▶ 1/2", 3/4", 1", 1-1/4", 1-1/2", and 2"
 Screwed NPT Ends
- ► ANSI Class 125 or 250 Body Rating
- ► ANSI Class IV Close off
- ► Bronze Trim with EP or Teflon Discs
- Quick Opening Flow Characteristic
- ▶ 46" Pneumatic Diaphragm Actuator
- Electric Actuators
- Stainless Steel Hardware
- NAMUR Standard Yoke for Accessories

DESCRIPTION

The rugged Powers Type WM (mixing bronze body) valve is primarily used for fluid mixing and bypass applications. The WM is not intended for diverting (one inlet, two outlet) applications. The soft seat plug provides tight (class IV) close off. Standard disc material is EP (rubber), teflon is an alternative disc choice for glycol/water and other chemical mixes and/or higher temperature applications. The WM's control and close off characteristics are particularly well-suited to commercial water tempering and industrial utility applications.

DIMENSIONAL INFORMATION (For other sizes consult factory)

Pneumatic	Actuators

Actuator*	A	В	bs.
46″	10″	10-3/8″	14

Valve Body

Size	C	D	E	lbs.
1/2	2-7/8″	1-3/4″	2-3/8″	2
3/4	3-3/8″	2-1/8″	2-5/8″	3
1	3-7/8″	2-7/16″	2-11/16″	4
1-1/4″	4-5/8″	2-5/8″	3-1/16″	6
1-1/2″	5-3/16″	2-7/8″	3-5/16″	8
2	6-1/4″	3-15/16″	3-8/8″	14

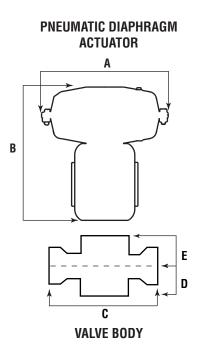
Utility (S-Series) Electric Actuators (not pictured)

Actuator*	Width	Depth	Height	Lbs.
SA, SC, SB, SG, SH, SJ	5-3/8″	6-3/4″	13-1/2″	14

*See Actuator Select Tables on page 5.

APPLICATION

To properly size a valve either follow these criteria or use the PowerSize[®] valve sizing program available at www.powerscontrols.com.


- Body Material and Rating. Bronze body, ANSI Class 125 (½" 1"), ANSI Class 250 (1¼" 2"), screwed NPT ends. Refer to Body Temperature/Pressure Ratings table to insure your application fits in the acceptable operating range. Also determine that the valve body material is compatible with your media.
- Trim Material. Bronze trim is for applications under 50 PSI.
- Flow Coefficient (CV Rating). Use the formulas below, PowerSize Valve Sizing Program, or specifying engineer's data to determine Cv. Select a valve size that most closely matches the calculated Cv from the Flowing ΔP, Close Off ΔP, and Cv Ratings table.

Liquid Sizing Formula

$$Cv = \frac{(GPM)}{\sqrt{\Delta P (PSI)}}$$
 For water and other fluids
with a specific gravity of 1.

Refer to form AE-1 or AE-32 for conditions other than those stated above.

• Flowing Pressure Drop (ΔP). To avoid cavitation and its accompanying trim damage, operating ΔP limits should be less than the quantity (0.66 x inlet pressure) + 10 PSI. Additionally, ΔP should not exceed 50 PSI.

BODY TEMPERATURE/PRESSURE RATINGS

ANSI Standard Ratings—Bronze Bodies

Temperature (°F)	Class 125 Lb. (psig)	Class 250 Lb. (psig)
-20 to 150	200	400
200	190	385
250	180	365
300	165	335
350	150	300
400	125	250

- **Piping.** Either as mixing or bypass (not diverting). Upper port is fail closed. (See page 7).
- Actuator Selection. Normal mixing operation requires only sufficient actuator force to fully stroke the valve against the specified ΔP . Three-way applications requiring tight close off against the upper or lower inlet ports require additional actuator force. The 3–15 and 1–17 columns in the Flowing ΔP , Close Off ΔP , and Cv Ratings table apply to valves with control signals coming directly from I/P transducers. The 0–30 column applies to valves using Accritem[®] type pneumatic controllers or valves equipped with a positioner or 0–30 PSI I/P.

					Maxi	PSI at Close	Close Off						
Valve CV Pl			Actuato	r Codes	Signal to Actuator								
		Plug	Pneumtatic	Electric Actuator		Pneumatic		Electric					
Size		Travel	Actuator	Size	3–15 PSI	1–17 PSI	0–30 PSI	4–20 mA					
1/2	4.2	1/8	46 / 4C	SA, SB, SC	50	50	50	50					
				SG, SH, SJ	-	-	-	50					
3/4	7.2	3/16	46 / 4C	SA, SB, SC	50	50	50	50					
				SG, SH, SJ	-	-	-	50					
1	12	1/4	46 / 4C	SA, SB, SC	50	50	50	50					
				SG, SH, SJ	-	-	-	50					
1-1/4	20	5/16	46 / 4C	SA, SB, SC	50	50	50	50					
				SG, SH, SJ	-	-	-	50					
1-1/2	26	5/16	46 / 4C	SA, SB, SC	48	50	50	50					
				SG, SH, SJ	-	-	-	50					
2	39	5/16	46 / 4C	SA, SB, SC	39	50	50	50					
				SG, SH, SJ	-	-	-	50					

Type WM CLOSE OFF $\Delta \textbf{P}$ AND CV RATINGS

NOTE: All Pneumatic Acuators are Direct Acting. Mixing valves have two inlets and one outlet. Published numbers are with respect to worst case conditions with zero downsteam pressure and zero upstream pressure on opposing port. A 50 PSI limit is imposed for trim life considerations.

SIZING REFERENCE

STEAM TABLE

Steam Pressure PSIG	Temp. °F	Temp. °C	Sensible Heat BTU/lb.	Latent Heat BTU/lb.	Total Heat BTU/lb.
0	212	100	180	971	1151
10	239	115	207	952	1159
25	266	130	236	934	1170
50	297	147	267	912	1179
75	320	160	290	896	1186
100	338	170	309	881	1190
125	353	178	325	868	1193
150	365	185	339	858	1197
200	387	197	362	838	1200
250	406	208	381	821	1202
300	422	217	399	805	1204
400	448	231	438	778	1216
500	470	243	453	752	1205
600	489	254	475	729	1204

LOAD SIZING CALCULATIONS

Heating Water with Steam

Quick Method

Lbs. /hr. =
$$\frac{\text{GPM}}{2} \times \Delta T$$

Lbs. / hr. =
$$\frac{\text{GPM x } 500 \text{ x } \Delta \text{T}}{\text{h}_{\text{f}_{g}}}$$

Heating or Cooling Water with Water

 $GPM_1 = GPM_2 \times \frac{\circ F \text{ water}_2 \text{ temp rise or drop}}{\circ F \text{ water}_1 \text{ temp rise or drop}}$

Heating or Cooling Water

 $GPM = \frac{BTU/hr.}{(°F water temp. rise or drop) \times 500}$

Heating Oil with Steam

Lbs. /hr. =
$$\frac{\text{GPM}}{4}$$
 x (°F oil temp. rise)

GLOSSARY OF TERMS

t = Time in Hours

Cp = Specific Heat of Liquid

S = Specific Gravity of Fluid

W = Weight in Lbs.

 $\Delta \mathbf{T} = \text{Temperature rise of fall in }^{\circ} F$

hf_g = Latent Heat of Steam

RECTANGULAR TANK CAPACITY IN GALLONS

Gallons = Height x Width x Length (inches)230 or H x W x L(ft.) x 7.5 Gallons =

CIRCULAR TANK STORAGE CAPACITY IN GALLONS

Storage = $6D^2 \times L$ (Gallons) Where: D = tank diameter in Feet L = length in Feet

Heating Air with Water

$$GPM = 2.16 \text{ x} \quad \frac{CFM \text{ x} (\circ \text{F air temp. rise})}{1000 \text{ x} (\circ \text{F water temp drop or rise})}$$

Heating Liquids with Steam

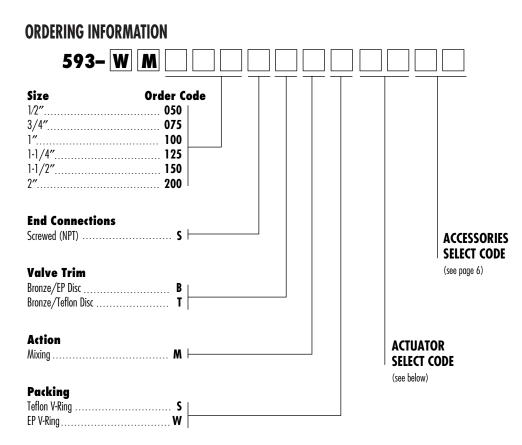
Lbs. / hr. =
$$\frac{\text{GPM x 60 x CP x W}}{h_{f_n}} x \Delta T$$

Heating Liquids in Steam Jacketed Kettles

Lbs. / hr. =
$$\frac{\text{GPM x Cp x S x 8.33}}{h_{f_x} x t} x \Delta T$$

General Liquid Heating

Lbs./hr. =
$$\frac{W \times Cp}{h_{f_q} \times t} \times \Delta T$$


Heating Air with Steam

Lbs. / hr. =
$$\frac{\text{CFM}}{900} \times \Delta \text{T}$$

CONVERSION FACTORS

1 lb. Steam/Hr. = 1000 BTU/Hr. 1 Cubic Meter = 265 U.S. Gallons 1 Cubic Foot Water = 62.4 lbs. 1 PSI = 2.04 inches of Mercury 1 PSI = 2.3 feet of Water 1 PSI = 27.7 inches of Water 1 U.S. Gallon Water = 231 Cubic inches 1 U.S. Gallon Water = 8.33 lbs.

Accurate Method

ACTUATOR SELECT CODE

CODE	PNEUMATIC DIAPHRAGM ACTUATORS							
46	46 Sq. In., 1" Max Valve Stroke with Standard Springs, adjustable start w/7 ~ 12 lb. Fixed span.							
4 C	46 Sq. In., 1" Max Valve Stroke with Extreme Cycle Springs, adjustable start w/7~12 lb. Fixed span.							
CODE	ELECTRIC ACTUATORS / FAIL CLOSE							
SA	Siebe MP361 motor w/AV330 Linkage, 24Vac, Fail Close, mA or Vdc Control Input							
SG	Siebe MP465 motor w/AV330 Linkage, 120Vac, Fail Close, mA or Vdc Control Input							
	ELECTRIC ACTUATORS / FAIL OPEN							
SB	Siebe MP371 motor w/AV330 Linkage, 24Vac, Fail Open, mA or Vdc Control Input							
SH	Siebe MP475 motor w/AV330 Linkage, 120Vac, Fail Open, mA or Vdc Control Input							
	ELECTRIC ACTUATORS / FAIL AS IS							
SC	Siebe MP381 motor w/AV330 Linkage, 24Vac, Fail As-Is, mA or Vdc Control Input							
SJ	Siebe MP485 motor w/AV330 Linkage, 120Vac, Fail As-Is, mA or Vdc Control Input							

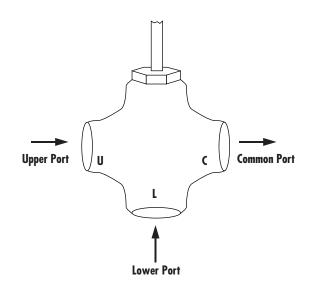
ORDERING INFORMATION (cont'd.)

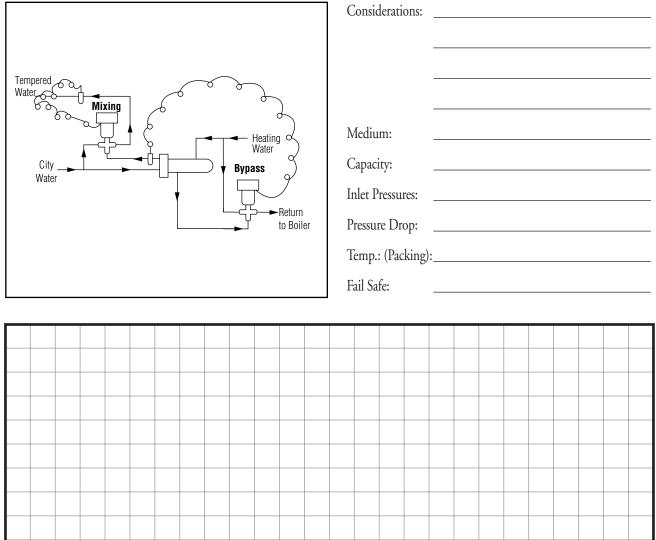
ACCESSORIES SELECT CODE

BELLO	DFRAM 1000 I/P'S	BAUN	MANN POSITIONER AND I/P	NO A	CCESSORIES
<u>Code</u> IS	Description 3–15 psi	<u>Code</u> BS	<u>Description</u> 4—20 mA	<u>Code</u> OS	Description No accessories
TS US	1—17 psi 3—27 psi	BAUN <u>Code</u>	NANN POSITIONER Description		
	CONTROL/AIR TYPE 900X I/P		3—15 PSI 3—9 PSI		
<u>Code</u> ES	<u>Description</u> 0—30 psi	SS	9—15 PSI		

I/P TRANSDUCERS

The "standard" 3–15 psi signal was originally designed as a transmission signal, not a valve actuation signal. Unbalanced control valves have their operational limits lowered when forced to operate with this 3–15 psi signal. The Fluid Controls Institute (in Standard 87-2) has recommended that a 1–17 psi air signal range be used when directly actuating a control valve without a positioner. Powers concurs with this recommendation, and therefore, offers a 1–17 psi I/P transducer and a 0–30 psi I/P transducer for maximum close-off. 3–15 psi I/P transducers should be used in conjunction with positioners.


POSITIONERS


Positioners are used for one or more of the following reasons:

- 1) To split range valves.
- 2) To eliminate unwanted valve movement caused by line pressure variations
- 3) To minimize the effects of "stick-slip"
- 4) To speed response time and/or
- 5) To increase close-off rating when I/Ps are used.

PORT LAYOUT

Upper port is fail-closed on pneumatic diaphragm actuators and typically plumbed as the "hot" port in temperature mixing applications.

